USN					

Srinivas Institute of Technology Library, Mangalore

06EC751

Seventh Semester B.E. Degree Examination, Dec.09-Jan.10 Operating Systems

2

Time: 3 hrs.

Max. Marks:100

Note:1. Answer any FIVE full questions, selecting not more than THREE from each part.

2. Draw diagrams wherever necessary.

PART - A

1	b.	With diagram, explain the model of a computer system as viewed by an OS.	(08 Marks) (08 Marks) (04 Marks)				
2	b.	Explain how to configure and install supervisor. Explain i) Kernel based operating system ii) Micro kernel based operating Explain the concept of semantic gap.	(08 Marks) ng system. (08 Marks) (04 Marks)				
3	b.	Explain Kernel level threads and user level threads. Explain the event handing actions of kernel. Explain the process state transitions in Unix.	(08 Marks) (08 Marks) (04 Marks)				
4	b.	Explain i) lazy buddy allocator ii) slab allocator. Explain merging of free areas using boundary tags. Compare continuous and non continuous memory allocation.	(08 Marks) (08 Marks) (04 Marks)				
		$\underline{\mathbf{PART}} - \underline{\mathbf{B}}$					
5	b.	Explain demand loading of pages. Given the reference to the following pages by a program 0, 9, 0, 1, 8, 1, 8, 7, 8, 7, 8, 2, 3, 8, 3 how many page faults will occur if the program has 3 page frame to it and uses LRU policy. Explain page sharing.	(08 Marks) , 1, 2, 8, 2, s available (08 Marks) (04 Marks)				
6		Explain file system and IOCS layers. Explain linked allocation and indexed allocation. Explain Unix file system.					
7		Explain scheduling in Unix. Explain i) Round robin scheduling ii) Priority based scheduling. Explain mechanism and policy modules of process scheduler.	(08 Marks) (08 Marks) (04 Marks)				
8		Explain mail boxes. Explain i) direct and indirect naming ii) blocking and non blocking sends. Explain inter process message control box.	(08 Marks) (08 Marks) (04 Marks)				

en de la companya de la co

Seventh Semester B.E. Degree Examination, May/June 2010 Operating Systems

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Explain the batch processing system, with figures. In a batch processing system, the results of 1000 students are to be printed. Reading a card or printing a result needs 100 msec whereas read/write operation in a disk needs only 20 msec. Processing a record needs 10 msec of CPU time. Determine the total time taken, CPU idle time and speed of the reading operation with and without spooling technique. (08 Marks)
 - b. Describe the scheduling and memory management techniques in a time sharing operating system. Determine the efficiency and user response time of the system, if the time slice used is 5 msec and context switching time is 120 microseconds, when the number of active users is 6. The process P₁ has a CPU burst of 20 msec and an I/O operation of 120 msec and the process P₂ has a CPU burst of 18 msec and I/O operation of 60 msec. Write the timing diagrams and scheduling table.

 (12 Marks)
- 2 a. Explain

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice.

ulsorily draw diagonal cross lines on the remaining blan

Important Note: 1. On completing your answers, cd

- i) functions of an operating system
- ii) Microkernel operating system.

(08 Marks)

- b. Describe the operation of the operating system while processing an I/O interrupt, with a detailed block diagram. How the memory protection violation interrupt is generated? Explain with an example and figure. (12 Marks)
- 3 a. Describe with diagrams: (i) kernel level threads (ii) process state transitions. (08 Marks)
 - b. Describe race condition and analyze the different cases in air reservation system, when the total seating capacity is 200. The last seat number 200 is to be allocated in a multiprocessing system, sharing the common database. Explain any one remedy for the problem encountered. Write the relevant algorithms.

 (12 Marks)
- 4 a. Differentiate between:
 - i) Static and dynamic memory allocation
 - ii) First-fit and best-fit free space allocation.

(08 Marks)

b. Describe fixed and variable partitioned, contiguous memory allocation schemes along with their merits and Idemerits. Also, explain memory compaction/relocation used in these schemes.

(12 Marks)

PART - B

5 a. Explain paged allocation scheme along with the address translation method. Determine the unknown values in logical and physical address space, if the main memory size is 1 Mbyte and is partitioned into 64 equal parts. The number of pages in the logical address space is 2048.

(08 Marks)

5 b. Describe FIFO and LRU page replacement policies, their features, merits and demerits, with respect to the following example: Alloc = 3 and Alloc = 4 frames

All pages are initially empty and the first page referred itself causes a page fault.

Page reference string: 5, 4, 3, 2, 1, 4, 3, 5, 4, 3, 2, 1, 5

Reference time string: t_1 , t_2 , t_3 ,, t_{13} .

(12 Marks)

- 6 a. Differentiate between:
 - i) Sequential and direct file organization
 - ii) Linked and indexed disk space allocation.

(08 Marks)

b. Describe file system operation during open, a file operation and close operation. (12 Marks)

- 7 a. Compare
 - i) Long term and short term schedulers
 - ii) Preemptive and non-preemptive scheduling
 - iii) User mode and supervisor mode.

(08 Marks)

b. Describe SRN/SJN and LCN scheduling policies and determine average turn around time, average waiting time and equations/formulae along with scheduling table for the following example:

(12 Marks)

Process	Arrival time in msec	Execution time in msec	Deadline in msec
P_1	0	3	4
P ₂	2	3	14
P_3	3	2	6
P ₄	5	5	11
P ₅	8	3	12

- 8 a. Describe the issues in message passing and also direct and indirect naming techniques.
 - (08 Marks)
 - b. Describe the delivery of interprocess messages along with algorithm for send and receive operations. What are the advantages of mailboxes? (12 Marks)

* * * * *